
A Local Perspective on the Bay TMDL

Chesapeake Bay Commission

Department of Public Works and Environmental Services Working for You!

Program Overview –Fairfax County

- Size: 400 sq. miles
- Population: >1 million
- Phase I MS4 (since 1997)
- 42,000 Storm Drainage Inlets
- 4,200 Private Stormwater Management Facilities
- 1,900 Public Stormwater Management Facilities
- 1,300 Miles of Pipe
- 850 Miles of Perennial Streams
- 105 Local Impairments

Drivers – Municipal Stormwater Program

Chesapeake Bay TMDL (Total Maximum Daily Load)

Phosphorus, Nitrogen, Sediment

MS4 Permit (Municipal Separate Storm Sewer

System)

Inspection

Maintenance

Retrofit

Training & Out Reach

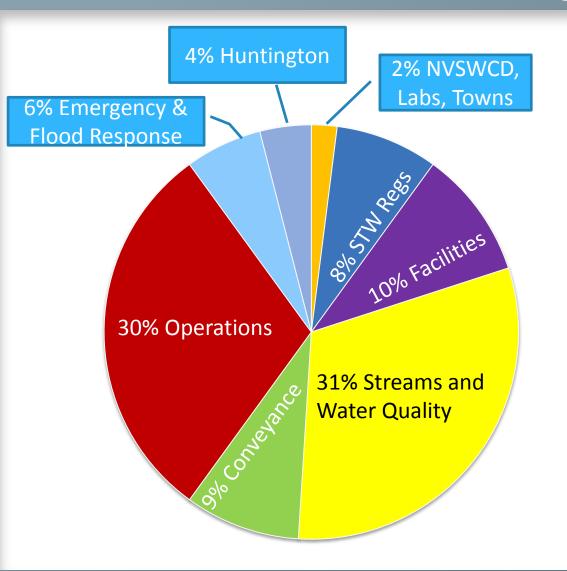
Administration

Local TMDLs

Planning, Retrofitting

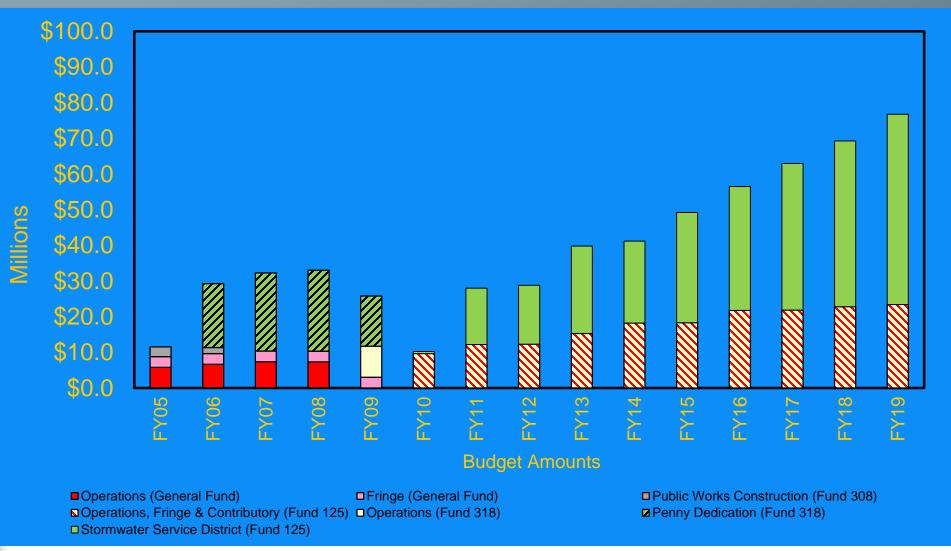
Infrastructure

Inspection & Reinvestment


Dam Safety

Flooding

Structure, Roads, Yards


Watershed Management Plan Projects and Stormwater Update Fiscal Year 2019 Budget \$77M

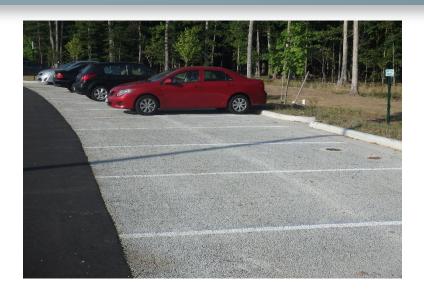
- (2%) NVSWCD, Occoquan Lab, Towns, \$1.4 M
- (8%) Stormwater Regulatory Programs, \$6.5 M
- (10%) Dam Saftey and Facility Rehabilitation, \$7.5M
- (31%) Streams and Water Quality, \$24.2M
- (9%) Conveyance Systems,\$7.0M
- (30%) Operations, \$23.3M
- (6%) Emergency and Flood Response, \$5.0M
- (4%) Contribution to Huntington, \$3.0M

History of Stormwater Funding

Stream Restoration

2016

Stormwater Basin Retrofits



Retrofits

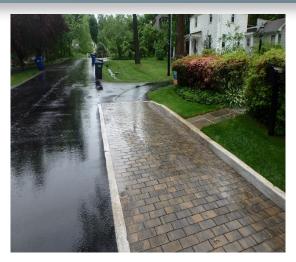
Partnerships - Stringfellow Park and Ride

Partnership - George Marshall High School

Partnership - Libraries and Schools

Porous Pavement Challenges

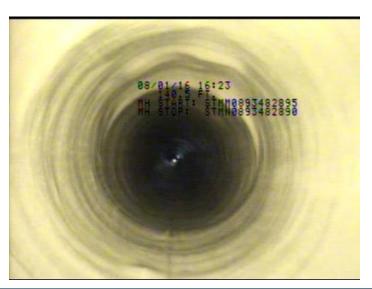
Deteriorated Porous Concrete Replaced with Porous Concrete Slabs


Sealed Porous Asphalt

Green Street

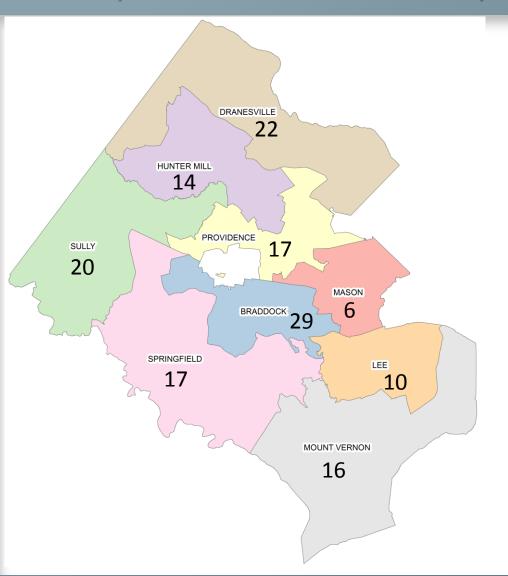
Managing water at the source

Pavement Removal



Projects - Stream and Water Quality Improvements

Conveyance Rehabilitation



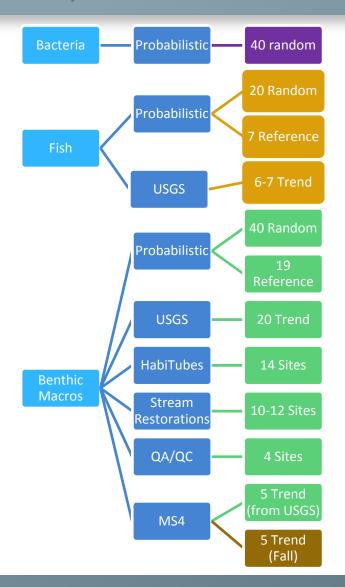
Outfall Restorations

Completed Water Quality Projects

Completed Water Quality Projects FY10-18		
Number of Projects	151	
Acres Treated	33,150 Ac	
Linear Feet Treated	48,700 LF	
Phosphorous Removed	8,100 lb/yr	
Nitrogen Removed	38,450 lb/yr	
Sediment Removed	1,503 ton/yr	

Total Project Cost: \$97,400,000

Completed Facilities FY10-18: Cost based on Averages


		Capital Cost (\$/(lb/yr))				
Practices	Number Installed		TN	TP	7	SS
Stream Restoration	34	\$	2,800	\$ 14,900	\$	49
Pond Retrofits	51	\$	5,700	\$ 101,400	\$	45
Infiltration Swales & Trenches	14	\$	11,400	\$ 145,800	\$	211
Dry Swales	9	\$	14,500	\$ 176,900	\$	254
Bioretention (Rain Gardens)	27	\$	24,900	\$ 253,200	\$	374
Pervious Pavement	27	\$	28,800	\$ 250,100	\$	312

Metrics – Maintenance Unit Costs

Facility Type	Annualized Insp, Maint, and Replacement Total	Average Treated Area (acres)	Cost to Maintain per Acre Treated (\$/acre)
Infiltration	\$2,000	0.38	\$5,300
Bioretention	\$1,300 - \$3,800	0.57	\$4,500
Vegetated Swale	\$2,200	1.5	\$1,500
Filtering Practice	\$3,500	1.3	\$2,700
Constructed Wetland	\$6,900	4.6	\$1,500
Wet Pond	\$5,400	40	\$140
Dry Pond	\$6,900	16	\$430
Manufactured BMP	\$1,350	1.4	\$960

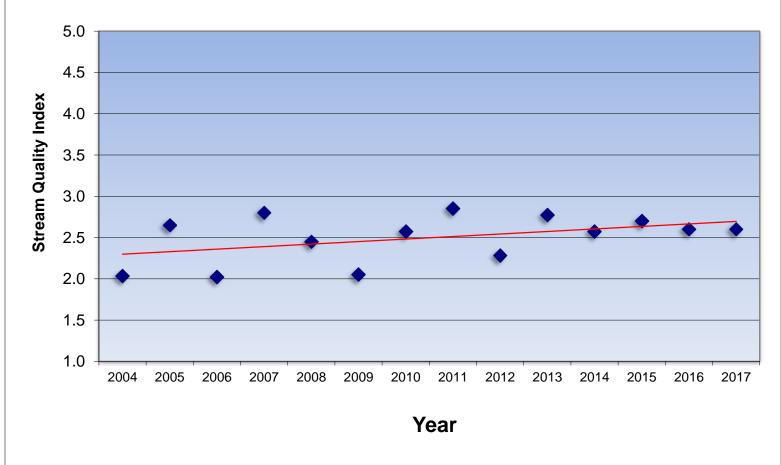
Comprehensive Biological Monitoring

MS4

Continuous (5X per year)

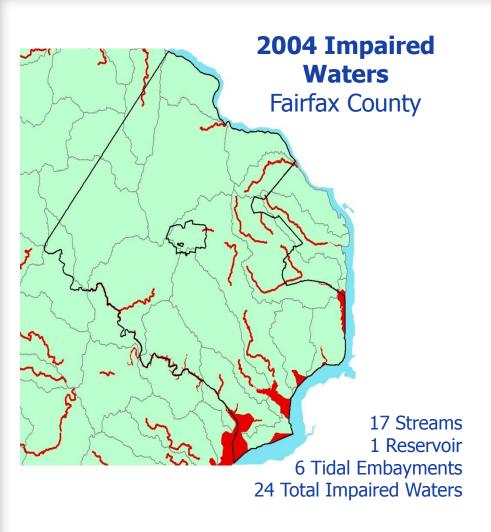
Late Summer (Aug-Sept)

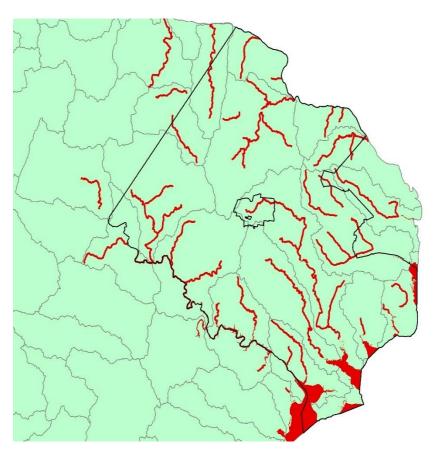
Spring (Mar-Apr)



Fall (Oct)

Stream Condition Score




Overview - Explaining A Program

- What exactly are we required to do?
- How much will it cost?
- What do I get for my investment?
- What are the most cost effective solutions?
- What are the long term impacts and costs?

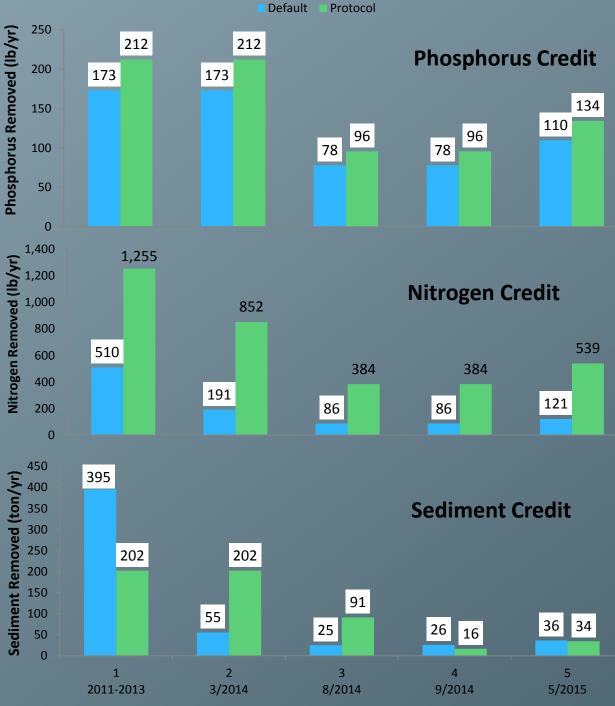
Challenges - Local Impairments

2014 Impaired List is 105

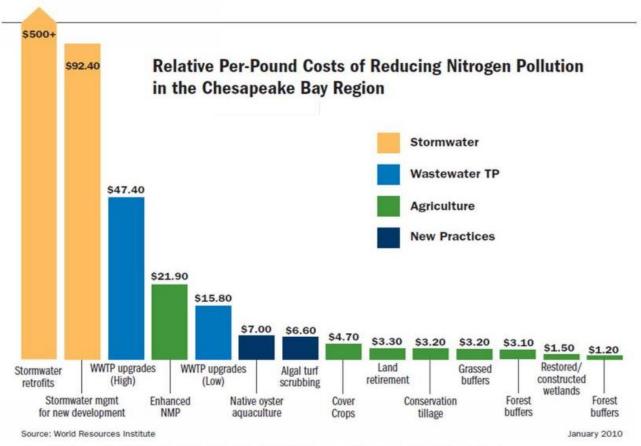
Challenges - Local TMDLs

•	Bacteria	WLA	Reduction
	Upper Accotink Creek:	0.13 E+15 cfu/yr	92%
	Lower Accotink Creek:	1.73 E+12 cfu/yr	97%
	· Bull Run:	7.61 E+10 cfu/yr	89%
	Difficult Run:	9.44 E+12 cfu/yr	90%
	· Four Mile Run:	2.04 E+13 cfu/yr	98%
	Pope's Head Creek:	6.83 E+11 cfu/yr	94%
•	Sediment		
	· Bull Run:	4,096 tons/yr	78%
	Difficult Run:	3,595 tons/yr	32%
	Pope's Head Creek:	1,571 tons/yr	28%
•	PCBs		
	· Tidal Potomac:	54.7 g/yr	75%
	Salt		

Explaining STW to the Lay Person


- The capital cost for P removal is \$15,000 -\$200,000/lb.
 - Gold sells for \$1,200/oz.
- Where is the sediment coming from?

River Basin	Urban Pervious (lbs Sediment/ac)	Urban Impervious (lbs Sediment/ac)
James	101.08	676.94
Potomac	175.80	1,171.32
Rappahannock	56.01	423.97
York	72.78	456.68


- Where do P and N come from?
- Targets seem to move next slide

Changes in Stream Credit

- New Interim
 Rate & Original
 Expert Panel
 Report
- Expert Panel Report Changes
- 3. TMDL APG
- 4. GIT-Approved Expert Panel Report
- 5. Revised TMDLAPG

Explaining STW to a Rate Payer

For more information on nutrient trading and an updated version of this cost-curve, please visit the World Resources Institute Website at: http://www.wri.org/publication/how-nutrient-trading-could-help-restore-the-chesapeake-bay

Explaining STW to the Lay Person

- How are we going to sustain thousands of residential green devices?
 - Typically treat small area or <0.5lb.

Need Sound Science

- What exactly are we required to do?
 - We need consistency, we can't keep moving the targets and accounting
 - Realistic, Achievable Goals
- How much will it cost?
 - We need realistic estimates EPA Estimated \$7.9B/yr. @ \$23,900/lb. P
- What are the most cost effective solutions?
 - We need better and consistent science Where are the loads really coming from? What do the treatment practices really do?
- What are the long term impacts and costs?
 - We need to understand the sustainability of our actions.
- We need Federal and State Leadership & Funding to Develop the Science

Stormwater is about Cultural Change

What do I get for my investment?

- Collecting, Treating and Transmitting STW is not Free
 - It has a big cost We need Support for our Funding Tools
 - Funding for Stormwater on Transportation Projects
- We do not have a Shared Value for Environmental Benefits
- STW Systems have been Ignored
 - Drain the swamp
 - Get it in a pipe
 - Fill the low area
 - Dilution is the solution

 Our every day actions have a big cumulative impact Pet Waste

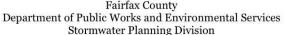
Litter

Impervious surfaces

Fertilizer

Additional Information

Randy Bartlett
 (703) 324-5732
Randy.Bartlett@Fairfaxcounty.gov



9/17

Fairfax County Government Center Complex Stormwater Management Walking Tour Herrity Wet Pond Public Safety (dredging, bioretention, Headquarters (green continuous monitoring roofs, bioretention, and adaptive control (CMAC) technology, permeable pavement, step pool conveyance cistern, swale) Government Center Stream system) (unrestored tributary) Pollinator Meadow Herrity Parking (converted open space) Garage (green roof) Legend StormNet Facilities Government Center All Other Types Farm Ponds **Facility Type** 0592DP Pond (enhanced Amended Soil (AS) extended detention dry pond) Bioretention (BR) Constructed Wetland (WL) 0593DP Pond (enhanced Dry Pond (DP) extended detention dry pond) Government FC-NONPL Center Stream FC-PL566 0594DP Pond (extended (restored section) Farm Pond (FM) 1029DP Pond detention dry pond) (extended Floating Wetland (FTW) detention dry pond) Forebay (FB) Government Facility (GOV) 0595DP Pond (enhanced Green Roof (GR) extended detention dry pond) Manufactured BMP (MB) Open Space (OS) Parking Lot (PL) Pickup 0597DP Pond Pervious Pavement (PP) (enhanced extended Reforestation (RF) detention dry pond) Roof Top (RF) Sand Filter (SF) Tree Box Filter (TF) 0596DP Pond Trench (TR) (enhanced extended Underground (UG) detention dry pond) //// Vegetative Filter (VF) Vegetative Swale (VS) Wet Pond (WP) **Fairfax County** 570 Feet

PUBLIC SAFETY HEADQUARTERS GREEN INFRASTRUCTURE

STORMWATER MANAGEMENT PRACTICES

