Aviation, Agriculture, and Water Quality: A Triple Win for Sustainability?

Tom Richard

Director, Institutes of Energy and the Environment Penn State University

Biofuels and the Bay – From 2008 to Today

Maximum Nitrogen Load Changes for Biofuels

Millions of pounds per year of nitrogen delivered from the Chesapeake Bay watershed to the Bay under five modeling scenarios.

Assumptions for Alternative Scenarios:

- Corn: 300,000 additional acres of corn with typical levels of management practices
- Soybeans: 300,000 additional acres of soybeans with typical levels of management practices
- 300K Switchgrass: 300,000 acres of switchgrass, converted primarily from hay and pastureland, with no fertilization
- Corn with Cover Crops: Cover crops on all existing and new (additional 300,000) corn acres and one quarter of all other row crops, watershed-wide.
- **IM Switchgrass:** 1 million acres of switchgrass, converted primarily from hay and pastureland, with no fertilization

SOURCE: U.S. EPA CHESAPEAKE BAY PROGRAM OFFICE

Opportunities for a Regional Bioeconomy

Aviation and Military Biofuels:

- Renmatix, global headquarters in King of Prussia, PA, partnering with Amyris Biotechnologies and Total to make jet fuel from cellulosic biomass.
- Delta, operating a former Conoco-Phillips refinery in Trainer, PA. Capacity: 3 billion gallons/year
- * The Navy's Great Green Fleet
- * Naval Station Norfolk
- * BWI, Dulles, Philadelphia AirportsOther:

PennState

- * Applied Biorefinery Sciences, CoolPlanet, Enchi, AgriTech
- * Tranlin, building a \$2 billion pulp mill in Chesterfield, VA

7 September 2016

Many Paths to Aviation Biofuels

Marginal Costs of Carbon Reduction

Abatement cost <\$50/ton

Conservation Feedstock: Shrub Willow

Conservation Feedstock: Perennial Grasses

Perennial Annual Biomass Crops

Winter Rye

- High uptake of N
- Highly digestable
- * No conflict with food production

Biomass Sorghum

- * High uptake of P
- * Rotate with other summer annuals
- * Use as bedding before producing energy

* Both also with multiple bioenergy/biofuel/biomaterial projects!

Landscape Design for Sustainability

Placement of prairie filter strips at (a) Basswood, (b) Interim, and (c) Orbweaver.

10 to 20% of the landscape in perennials results in 85 to 95% reductions in N, P and sediment!

3

Zhao et al. 2014

Prairie Strips in Action – "Before"

10/2006

Google Earth 5/7/2016

Prairie Strips in Action (early spring)

Working Buffers – by the numbers

- * The Chesapeake Bay Watershed has 181,4400 miles of streams and rivers.
- * WIPs require vegetative buffers for 70% of streambanks and shorelines. Currently at 58%. The difference represents 22,000 miles of new buffers.
- * At 900 miles per year, this will take decades
- Each mile of two-sided 100 foot buffer = 24 acres.
- * This represents 22,000 acres/year removed from production, and over 500,000 acres eventually – at \$500/acre the lost revenue totals \$250 million/year.
- Instead of an economic loss, these acres could produce 250 million gallons of biofuel, with revenue of >\$1 billion/year for rural communities. 7 September 2016

Yeoman Farmer meets The Internet of Things: Sub field economic analysis

- * Since the dawn of agriculture, farmers have managed the landscape as fields. These fields were once small, but now are large. And they are far from uniform.
- Farmers have traditionally assessed profitability on the basis of a whole field. Precision agricultural tools allow much higher resolution. That knowledge now allows sub-field profit management.

* Key question: To what extent do economically marginal regions of fields overlap with environmentally sensitive parts of the landscape?

Sub-field profitability based on soils...

14

Flood risk vulnerability increasing

Losses!?! Tropical Storm Lee – 9/8/2011

Sub-Field Profitabiity needs Soils plus... hydrology, risk and resilience

Sub-field Profit Analysis in Iowa

0.18 \$/kg Grain Price

0.20 \$/kg Grain Price

6-Year Average Net Profit (\$/ha)

Converting the 0.20 \$/kg red regions from corn to switchgrass nearly doubles biomass tonnage

Bonner et.al. 2015

Price Variability

SOURCE: WWW.TRADINGECONOMICS.COM | CBOT

Figure 4. Area within Hardin County, Iowa operating at or below a range of six year average net losses based on varied corn grain price.

Biomass By the Numbers:

County Level Statistics	Net Profit Decision Point (\$•ha ⁻¹)						
	0	-100	-200	-300	-400	-600	None
Corn Stover Availability, Mg·year ⁻¹	182,000	193,000	206,000	213,000	217,000	217,000	217,000
Switchgrass Availability, Mg·year ⁻¹	250,000	149,000	73,000	29,000	12,000	9,000	0
Total Biomass Availability, Mg·year ⁻¹	432,000	342,000	278,000	241,000	228,000	226,000	217,000
Mass Fraction Corn Stover	42%	57%	74%	88%	95%	96%	100%
Mass Fraction Switchgrass	58%	43%	26%	12%	5%	4%	0%
Annual Biomass Increase ^a	99%	58%	28%	11%	5%	4%	-
Land Conversion	22%	14%	7%	3%	2%	1%	-
Fields Affected	85%	74%	57%	30%	16%	15%	-
Mean Field Level Area Change ^b	25%	18%	12%	10%	10%	9%	-
Mean Field Level Profit, \$•ha ^{-1 c}	198	174	151	134	127	125	113
Field Level Profit Std.Dev, \$ ha ⁻¹	92	127	157	175	183	185	205
Profit Variance Between Fields	49%	39%	36%	37%	38%	38%	41%
Profit Variance Within Fields	51%	61%	64%	63%	62%	62%	59%
Reduction in Total Profit Variance	78%	65%	50%	36%	28%	25%	-

^a Biomass increase relative to sustainable corn stover availability when no landscape integration is considered;
^b Mean change in area of only the fields affected by landscape integration at each respective decision point;
^c All profit calculations are relative to the remaining row crop area of all fields as switchgrass is incorporated.

Bonner et.al. 2015

Landscape Agroecosystem Modeling

Outputs:;

- 1) Design for Sustainability
- 2) More profitable farms,
- 3) Improved water quality,
- 4) Sustainable biofuels

Build land use scenarios

New Patterns on the Landscape

Case #1: Elkton, Va

Owner: Merck

Operator: FDC Enterprises

600 acres switchgrass

Summarizing the Opportunity:

- Perennials and cover crops are recognized as least-cost strategies for improving water quality. Both can also be biofuel feedstocks.
- Farmers currently assume that converting land to perennials and cover crops will reduce profits.
- Sub-field economic analysis suggests strategic planting of perennials can instead increase profits.
- The Bay-State Watershed Implementation Plans include planting hundreds of thousands of acres of cover crops and perennial riparian buffers.
- Managing those areas for biofuels represents an opportunity for not just improving water quality, but improving farm profitability, rural economic activity, and sustainable energy for the region.

References

- * Feyereisen, G.W., G.T.T. Camargo, R.E. Baxter, J.M. Baker and T.L. Richard. 2013. Cellulosic biofuel potential of a winter rye double crop across the U.S. corn-soybean belt. *Agronomy Journal* 105(3):631-642.
- Shao, X., K.M DiMarco, T.L Richard and L.R Lynd. 2015. Winter rye as a bioenergy feedstock: impact of crop maturity on composition, biological solubilization and potential revenue. *Biotechnology for Biofuels* 8:35. DOI: 10.1186/s13068-015-0225-z.
- Bonner, I.J., K.G. Cafferty, D.J. Muth, Jr., M.D. Tomer, D.E. James, S.A. Porter, and D.L. Karlen. 2014.
 Opportunities for Energy Crop Production Based on Subfield Scale Distribution of Profitability. *Energies*, 7:6509-6526; doi:10.3390/en7106509
- * Zhou, X., M.J. Helmers, H.Asbjornsen, R.K. Kolka, M.D. Tolmer and R.M. Cruz. 2014. Nutrient removal by prairie filter strips in agricultural landscapes. *Journal of Soil and Water Conservation* 69(1):54:64. doi:10.2489/jswc.69.1.54
- * Camargo, G.T.T., M.R. Ryan and T.L. Richard. 2013. Energy use and greenhouse gas emissions from crop production using the Farm Energy Analysis Tool. *Bioscience* 63(4):263:273.
- * Chesapeake Bay Commission. 2007. Biofuels And the Bay: Getting It Right To Benefit Farms, Forests and the Chesapeake. 32 pages. Available at: <u>http://www.chesbay.state.va.us/</u>

Collaborators:

Penn State: Armen Kemanian, Felipe Montes, Amanda Ramcharan, Kate Zipp

Farm 2 Fly 2.0 : Rich Altman; Commercial Aviation Alternative Fuels Initiative: Steve Csonka

University of Maryland Eastern Shore, U. Md Center for Environmental Science; University of Virginia, Virginia Tech, Cornell University, Drexell University, Delaware State University, State University of New York Environmental Sci. & Forestry

Idaho National Lab: Ian Bonner, Damon Hartley and Erin Searcy

USDA ARS National Lab for Agricultural and Environment: Mark Tomer, Doug Karlen, Dave James and Sarah Porter

Agsolver: Dave Muth; Antares: Kevin Comer

Oak Ridge National Lab: Virgina Dale, Matt Langholtz, and Keith Kline

