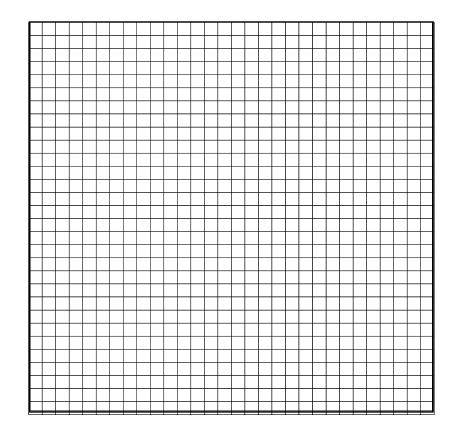
New Tools for the Mid-Point Assessment & WIP Development

James Davis-Martin Bay Manager - VA DEQ Chair - Water Quality GIT

November 11, 2016

> Land Use Land Cover Resolution


30 Meters 32.8 Yards 98.4 Feet 30 Meters 32.8 Yards 98.4 Feet

> Land Use Land Cover Resolution

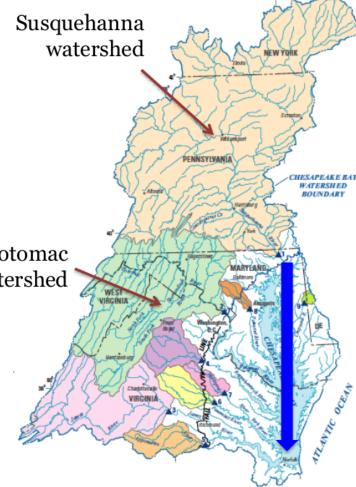
	30 Meters 32.8 Yards 98.4 Feet
30 Meters	1 Meters
32.8 Yards	1.1 Yards
98.4 Feet	98.4 Feet

Land Use Land Cover Resolution

900 Times Better Resolution 184 Million pixels to 165 Billion pixels

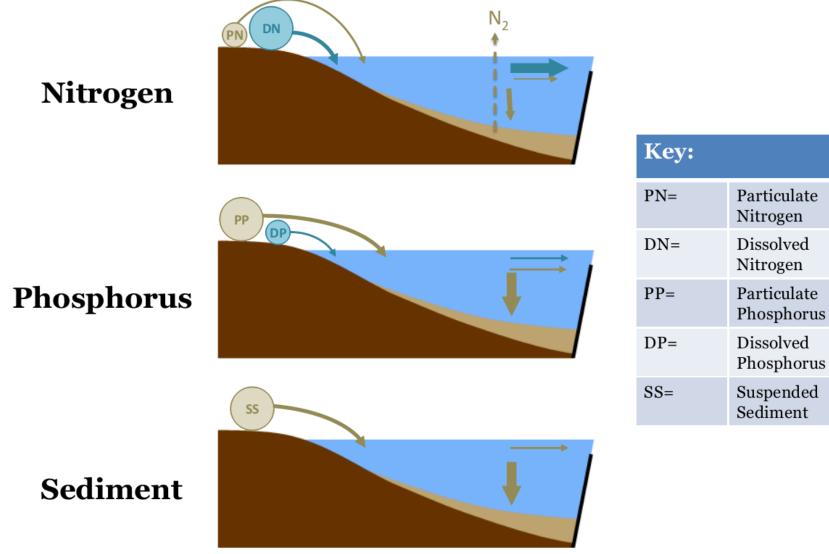
Greatly Improved Land Use Land Cover Dataset Current input comes from latest NLCD, 30m resolution - 2011
New LULC will have 1m resolution - 2012-2014
Final Model Land Use supplemented with Local datasets and augmented by local review

NLCD 30-meter land cover dataset


- •Underestimates impervious cover in rural areas
- •Underestimates vegetation in dense urban areas
- Overestimates agricultural areas

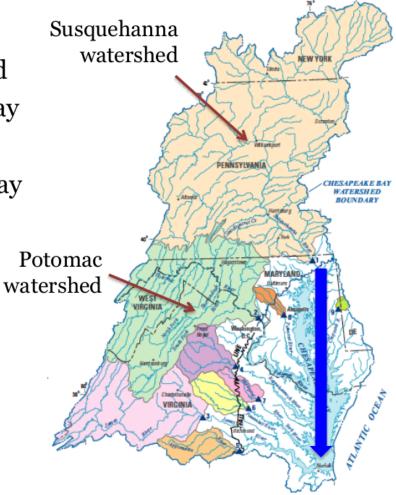
Conowingo

Susquehanna River Has a Major Influence on Chesapeake Bay Water Quality


Previous Understanding

- 43% of Chesapeake Bay watershed
- 47% of freshwater flow into the Bay
- 41% of nitrogen loads to the Bay
- 25% of phosphorus loads to the Bay
- 27% of sediment loads to the Bay
- Influences Bay water quality well Potomac into Virginia's portion of the Bay ^{watershed}

Conowingo


Source: Currey, MDE, Personal Communication

Conowingo

Susquehanna River Has a Major Influence on Chesapeake Bay Water Quality

New Science

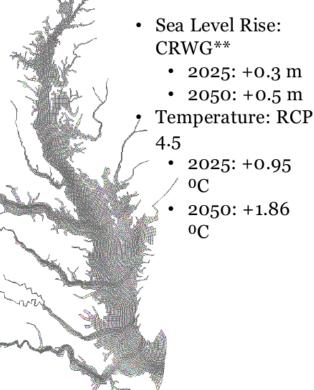
- 43% of Chesapeake Bay watershed
 47% of freshwater flow into the Bay
 45[±] 41% of nitrogen loads to the Bay
 45[±] 25% of phosphorus loads to the Bay
 45[±] 25% of sediment loads to the Bay
- Previously unaccounted for loads will require additional effort to meet goals.
- How to allocate loads among jurisdictions?

Climate Change

>> Model Climate Inputs

Model inputs were consistent with STAC Workshop and Climate Resiliency Workgroup Guidance

Precipitation Volume

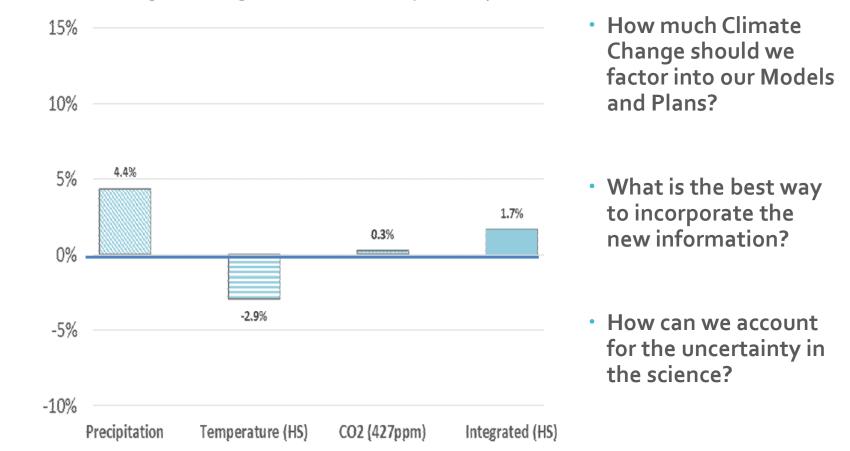

2025: +3.1% (long term trends)
2050: +7.3% (RCP* 4.5)

Temperature: RCP 4.5

2025: +1.05 °C
2050: +2.08 °C

CO₂ Concentration: Meinhausen, Malte, et al, (2011)

2025: 427 ppm
2050: 487 ppm


*RCP 4.5 signifies a specific Representative Concentration Pathway scenario as defined by the Intergovernmental Panel on Climate Change

**Based upon guidance provided by the Climate Resiliency Workgroup

> Climate Change

Estimated Influence of 2025 Increased Precipitation Volume & Intensity on Total Nitrogen Loads

Changes in Nitrogen Load to the Chesapeake Bay

Source: Gopal Bhatt, Penn State; Kyle Hinson, CRC; and Andrew Sommerlot, UMCES

Animal Waste Storage Systems	Phase 6 Nutrient Management	Advanced Onsite Systems (Attenuation) Part II
Phase 6 Conservation Tillage	Wetlands	Cropland Irrigation Management
Manure Injection/ Manure Incorporation	Urban Tree Canopy	Manure Treatment Technologies
Oyster Restoration/ Aquaculture	Floating Wetlands	Impervious Disconnection
Boat Pump- Out	Advanced Onsite Systems, Part III	Agricultural Ditch
Phase 6 Cover Crops		Agriculture Stormwater Structures

Animal Waste Storage Systems	Phase 6 Nutrient Management	Advanced Onsite Systems (Attenuation) Part II
Phase 6 Conservation Tillage	Wetlands	Cropland Irrigation Management
Manure Injection/ Manure Incorporation	Urban Tree Canopy	Manure Treatment Technologies
Oyster Restoration/ Aquaculture	Floating Wetlands	Impervious Disconnection
Boat Pump- Out	Advanced Onsite Systems, Part III	Agricultural Ditch
Phase 6 Cover Crops		Agriculture Stormwater Structures

Animal Waste Storage Systems	Phase 6 Nutrient Management	Advanced Onsite Systems (Attenuation) Part II
Phase 6 Conservation Tillage	Wetlands	Cropland Irrigation Management
Manure Injection/ Manure Incorporation	Urban Tree Canopy	Manure Treatment Technologies
Oyster Restoration/ Aquaculture	Floating Wetlands	Impervious Disconnection
Boat Pump- Out	Advanced Onsite Systems, Part III	Agricultural Ditch
Phase 6 Cover Crops		Agriculture Stormwater Structures

- Calibration critical BMPs will be completed by December 31st
- All others will be completed by September 2017, to be available for use in Watershed Implementation Plans and 2018-2019 Milestones

Local Area Goals

Why?

- Enhance local buy in and engagement in the WIP process
- Allow a jurisdiction to focus limited resources for implementation
- Assist local areas in understanding where best to target their efforts and resources
- Accelerate implementation progress to achieve the Chesapeake Bay TMDL

Local Area Goals

What is Local?

- Anything smaller than the jurisdiction-basin
 Virginia Potomac all sources
 - Pennsylvania Susquehanna all sources
- Ideally it aligns with the scale and source at which implementation decisions are made
- May be variable within a jurisdiction and among jurisdictions
- Flexibility for Jurisdictions is key
- No "one size-fits all" answer

Local Area Goals

How is the Local Goal expressed?

Could be quantitative

- Pounds of N, P and S Load
- Levels of Reduction Needed
- Extent of BMPs to be Implemented
- Yield goals load/acre of a land use
- Could be Qualitative
 - Programmatic Goals
 - Pace of Implementation
- Flexibility for Jurisdictions is key
- Should facilitate local planning and implementation

Local Area Goals

Experience with Federal Facility Targets

- 2015 Process to develop targets for the Federal Facilities in the Bay Watershed
- Different approaches by most jurisdictions
 EPA method applied as default
- Fostered increased engagement by Facilities
- Quantified what was needed beyond existing regulatory requirements
- Driven in part by Executive Order 13508
- Do we have a Driver, like EO13508, that can help encourage local partners to join?
 - Executive/Legislative/Regulatory mandate?
 - Incentive Funding?

SYSTEM INTEGRATION

Mid-Point Assessment

Phase 6 Model Development

- Historical BMP Data
- New Land Cover Classes and Data
- BMP Updates
- Conowingo Infill
- Climate Change
- Calibration to Monitoring Data
- Partnership Review and Approval

WIP 3

- Local Engagement
- EPA Expectations
- Jurisdiction-Basin targets
- Local Area Goals
- Planning Tools
- Optimization engine
- Implementation Forecast
- WIP Document

2017 Progress

- 60% Target Evaluation current model
- WIP 3 planning new model

Questions and Discussion

James.Davis-Martin@DEQ.Virginia.Gov 804-698-4298 James Davis-Martin Bay Manager - VA DEQ