Frank J. Coale

Professor

Agricultural Nutrient Management Specialist

Department of Environmental Science & Technology College of Agriculture & Natural Resources University of Maryland

Eutrophication is a Water Quality Impairment Linked to Agricultural Land Uses

- Nitrogen and/or phosphorus over-enrichment of surface waters
- Results in excessive algal growth
- The limiting nutrient for algal growth
 - Phosphorus in fresh waters
 - Nitrogen in saline waters
- In coastal estuaries like Chesapeake Bay, the limiting nutrient changes with water mixing, depth, location and season

Assessing P Losses: P Sources and Transport Pathways

P-loss Risk Assessment Concept

- Lemunyon and Gilbert, 1993.
 - Journal of Production Agriculture, Volume 6, Number 4, pages 483-486
- Phosphorus Index (1993)
 - Based on site-specific landform characteristics and management
 - Each site characteristic assigned a relative P-loss risk rating
 - Scale = None (0), Low (1), Medium (2), High (4), Very High (8)
 - Based on best professional judgement
 - Site characteristics assessed (weighting factors)
 - Soil erosion (1.5)
 - Irrigation erosion (1.5)
 - Runoff class (0.5)
 - Agronomic soil test P level (1.0)
- Fertilizer P application rate (0.75)
- Organic P application rate (1.0)
- Fertilizer P application method (0.5)
- Organic P application method (1.0)
- Site vulnerability for P loss = sum of weighted risk ratings

Assessing P Losses: P Source Risk and P Transport Risk

Total P

Sources

Total P

Transport

Х

P Site Index

(PSI)

- P Site Index (PSI)
 - P Site Index → P loss risk assessment tool (2002)
 - Numerical PSI score

 Interpretive category
 - Largely based on best professional judgment
 - − Interpretive categories → Adjust farm management

Assessing P Losses: P Source Risk For Each P Transport Pathway

Total P

Sources

X

- P Site Index (PSI)
 - P Site Index → P loss risk assessment tool (2002)
 - Numerical PSI score

 Interpretive category
 - Largely based on best professional judgment
- **Transition: PSI → PMT** (2012)
 - P Management Tool (PMT)
 - Multiplicative

 component
 - Represents processes of P loss
 - More complex

Total P

Transport

=

P Site Index

(PSI)

Factors Evaluated in PSI and PMT Assessments

	PSI	PMT
Soil erosion loss estimation		
Surface runoff potential of site		
Subsurface drainage potential of site		
P leaching potential of site		X
Distance from edge of field to surface water		
Buffer type and width		
Receiving water body priority status		X
Agronomic soil test P level		
Soil P saturation ratio	X	
P fertilizer application rate		
P fertilizer application method, placement, tillage & timing		
Manure P application rate and P solubility		
Manure P application method, placement, tillage & timing		

Phosphorus Management Tool (PMT) Final Score Interpretation

P Loss Rating	Interpretation
0 – 50	LOW potential for P movement from this site given current management practices and site characteristics. Total phosphorus applications should be limited to no more than one three-year crop removal rate applied over a three year period.
51 – 100	MEDIUM potential for P movement from this site given current management practices and site characteristics. Phosphorus applications should be limited to the amount expected to be removed from the field by crop harvest.
> 100	HIGH potential for P movement from this site given current management practices and site characteristics. No phosphorus should be applied to this site

- **Transition: PMT → PMT-2** (2015)
 - Replace "best professional judgment" calibration with external calibration data
 - Ideal scenario: calibrate PMT to measured P loss data
 - 2nd best scenario: calibrate PMT to modeled P loss data

<u>Annual P Loss Estimator (APLE)</u>

- Vadas et al., 2013 (http://www.ars.usda.gov/Services/docs.htm?docid=21763)
- Annual time step
- Edge-of-field estimation
- Simulates sediment and dissolved P surface losses from soil, manure and fertilizer sources
- Subsurface losses or leaching to groundwater are not simulated

- Calibrate PMT-2 using APLE P loss model
 - APLE-estimated P loss from modeled data set (n=10,000)
 - Modified PMT to include coefficients suggested by APLE P loss estimations for each P-loss pathway

– APLE-modified PMT → PMT-2

> **P Site Index (PSI),** 2002

- Average transport risk X average P source risk
- Largely based on best professional judgment

> P Management Tool (PMT), 2012

- Represents complex processes of P loss pathways
- Introduced P-loss risk analysis by pathway components
- Largely based on best professional judgment

P Management Tool – 2 (PMT-2), 2015

- PMT calibrated with APLE model derived coefficients
- Independent calibration with model data
- Surface pathways only

- Science and understanding evolve with long-term continuous research efforts.
- Intuitive, best professional judgment-based P-loss risk assessment can be valuable for guiding management.
- Complex risk assessments that mimic physical processes are reliable representations of real-world conditions but are difficult calibrate without independent data.
- Independent model output will be utilized to calibrate process-based P-loss risk assessment tools.

Thank you!

Frank J. Coale fjcoale@umd.edu

Department of Environmental Science & Technology College of Agriculture & Natural Resources University of Maryland

